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which yields the constant C. When x= -2, the requirement represents the second condition of 
solvability. The solutions obtained when both conditions of solvability are satisfied, are 
isolated. 

Since the condition i-?>(I corresponds to a weak, and 1 -cc'<0 to the strong shock 
wave /l/, it follows from the above analysis that when the wedge surface is subjected to an 
arbitrary conical perturbation, a solution exists and is unique if the unperturbed shock 
wave is weak, and there are no solutions if the shock is strong. 

The author thanks E.G. Shifrin for his interest. 
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TWO-VELOCITY MECHANICS OF GRANULAR POROUS MEDIA* 

N.3. MUSAYEV 

A two-phase mixture of a porous or granular solid phase and liquid or gas 
filling the pores or the intergranular spaces, is considered. Two limiting 
structures of the mixture are specified: 1) the solid phase represents 
dense packing cf spherical particles (grains) in intergranular point 
contact; 2) the pores represent channels, almost cylindrical in form. 
Expressions for the interphase forces and equations of the two-velocity 
motion of the phases are studied within these two structures. Different 

development of the interphase forces depending on the structure of the 
mixture is noted, the forces arising from the forces of inertia and in 
particular from the Archimedes and the attached-mass forces. 

Using the representations of the multivelocity continuum, we shall write the equation of 
conservation of phase masses in the form /l/ 

dp,/61 + @p,t,k = jzl. ap&% +- +p,Q = jl* (1 
(pi = p:ai, i = i, 2; a1 + CT* = i) 

The lower indices i=l, 2 refer, respectively, to the parameters of the liquid (gaseous 

and solid phases, pi0 and ~1 are the real and apparent density connected with each other 
through the volume concentration, Qi,v, is the velocity of the t-th phases, and I,, is the 
phase transition intensity characterizing the amount of mass of the j-th phase transported to 
the i-th phase per unit volume of the mixture, in unit time (I, j = 1,2; i F j). 

The equations of the phase moments can be written in the form /l/ 

*Prik1.~atem.~ekhar,., 49,2,334-336,198; 
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(2) 

d,u,” 
Plyii = &*‘h’ + q* + p&h 

Here o,'~ is the stress tensor in the i-th phase, defining the transfer of momentum in 

the :-th phase across the unit plane cross section in the mixture, Rnk is the interphase force 
determining the transfer of momentum from the first to the second phase across the interphase 
surface per unit volume of the mixture, and g,' are the external mass force vectors. When 

writing the term connected with the transfer of momentum caused by phase transitions, we 
assumed that the mass undergoing a phase transition has a velocity identical with the velocity 
of the solid (second) phase. Moreover, when ulfk and at/k are given, we shall neglect the 

transfer of momentum caused by the pulsatory (small scale) motion of the phases. 
If we regard the porous phase as a dense packing of spherical dispersed particles (grains) 

in point contact, we can specify (I,'~. 02'~ and R,P using the representations which were formulated 
for the disperse mixtures. To do this we can introduce the reduced stress tensors in the 
phases o,.~~ and 02, Ik which include, apart from the stresses ul'k and 4 , the interphase 

interaction along the interphase surfaces of the particles d&, cut off by the plane cross- 

section dS’ and adjacent to it /l/ 

,lh lk ih 
,* = $1 - 3*11, 

,Ih _ _,I; IA 
‘** - d* T 51?6. ,lk _ _ J* 

*Aa - I?* t3) 

where o&r and a,a[k are the interphase stress tensors. If we neglect the effect of viscosity 
in the stress tensors, assuming that it can manifest itself only through the interphase force, 
then we can adopt the following relations for the mixture with particles in point contact: 

s;: = - p,b'", ;:" = - c&E":, :$ = - Sits _ - a2p,b'B 

St). = _ 
2 

o. A,$" _ .I). 2 'z* 

and write the principal vector of the surface forces in the phases in the form 

(4) 

Here f is the interphase force acting from the direction of the liquid or gas, arriving 
at a particle or a granule whose whole surface, excpet for several points of contact, is washed 
by the liquid or gas, n is the numerical concentration of the particles, and op is their radius. 
The stress tensor in the mixture is equal to 

olfi f O,lk T ,,Jk e a,,!" T 02,/L = _-pl,+"' _. oz. i6! 

The above expressions imply that the reduced stress 029 ih is defined in terms of directly 
measurable quantities, namely the total stress in the mixture o/k and the pressure within the 
pores pI, and can be interpreted as a part of the stress tensor c# in the solid phase governed 
by the transfer of momentum through the particle contacts , independent of the liquid or gas. 

In the disperse mixtures of low concentration, where there are no 
u,.'k = 0. 

such contacts, we have 

Remembering that the whole surface of the dispersed particles (except for the finite 
number of the interparticle point contacts) is surrounded by the liquid (gas), we can represent 
the interphase force per single particle /'l/ in the form of the sum of the Archimedes force 

ii,. attached masses I,,.~ and the Stokes-type viscous friction force /,k, while the neglect- 

ing the Basset-type force!, since the "viscous boundary layer" surro'unding the particle is not 
stationary). 
R,rk 

Tinen the equations of phase moments and the total force of interphase interaction 
can be rewritten in the fom: 

d 

(7) 

Here p, is the viscosity of the first phase, 
the effect of the particle interaction. 

nm and n,, are coefficients expressing 
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Let us now consider another StrUCtUre Of a porous medium saturated with a liquid which 
fills the pores of almost cylindrical, channel-like shape. In the case of such a structure 
the tensors Ik k u,'121~llr. the force I" and the numerical concentration of the particles lose their 

sense and the stresses (3)-(7) cannot be utilized. In this case we define the stress in the 
liquid phase in terms of the pressure, following the reasoning used in (4). As in (6), we 
introduce the reduced stress tensor in the solid phase a*.lk 

(rl'k = --a&k, eJl‘= --qp,6'k + cl*'k (8) 
(r = al'k + el'k = R+j'k + a,,'" 

We see that the stresses +CL~ characterize the difference between the mean stresses 
Ik 

% :% in the solid phaseandthe pressure within the pores. As earlier in (6), the stress 

o,'k can be found from the measurements of o'k and p1/2/. 
If the channels in the porous medium are smooth, rectilinear and oriented along the 

direction of relative acceleration of the phases, then R,, does not contain the term AR::) 

since the pressure oscillations are small scale. A term A@, however, appears due to the 
viscous friction between the liquid and the channel walls 

~11" = pVka, + Qk, AS(')k = f,k 12 (91 
,rk= 
& Ir"*-%%% CL.? + I?) 

where 0. is the pore radius. In the general case, when the channels are curved, a component 
.&P)‘: 

12 appears, caused by the inertial interaction between the phases 

As a result, the equations of phase moments (71 generalized to the porous and granular 
media, have the forrr, 

d,: / 
p, d( = - a.r'p. - F m - FF, - I,2 (L.: - 1.1) - p,‘,, (li) 

The conservation equations Ci: and !ll: are closed by the equations of state for the 
liquid phase and the equations of state for the porous phase, nanely by the equations for 
a2*:':. A variant of the thoery describing the elastic behaviour of the porous phase is given 
in /l, 2/. 
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